

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

Thermodynamik 1 Kapitel 4

- Kapitel 4: Stoffdaten realer Fluide
- 4.1 Zustandsfläche realer Fluide
 - 4.1.1 *p,v*-Diagramm
 - 4.1.2 *p*,*T*-Diagramm
 - 4.1.3 "Ähnlichkeit" fluider Stoffe
 - 4.1.4 Isenthalpen und Isentropen im *p*,*v*-Diagramm
 - 4.1.5 Zustandsgrößen im Nassdampfgebiet
 - 4.1.6 Weitere Diagramme: T,s-, h,s- und p,h-Diagramm
- 4.2 Molekulare Wechselwirkungen
- 4.3 Kubische Zustandsgleichungen
- 4.4 Phasengrenzen
- 4.5 Virialzustandsgleichung
- 4.6 Berechnung kalorischer Zustandsgrößen
- 4.7 Fundamentalgleichungen
- 4.8 Beschreibung des gesamten fluiden Zustandsgebiets

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1 Zustandsfläche realer Fluide

- Die thermische Zustandsgleichung realer Stoffe f(p,v,T) = 0 lässt sich als Gleichung einer über den unabhängigen Variablen v und T aufgespannten Fläche p = p(v,T) darstellen
- 3D-Darstellungen sind f
 ür die Anschauung hilfreich, erm
 öglichen aber kaum ein quantitatives Ablesen bzw. Einzeichnen von Prozessen
- Stoffdaten sind f
 ür das Verst
 ändnis und die Auslegung thermodynamischer Prozesse unverzichtbar
- Einführung von Diagrammen zur Veranschaulichung

4.1.1 *p,v* - Diagramm

Das p,v-Diagramm ist eine 2D-Projektion der p,v,T-Fläche

Wichtige Begriffe

Homogene Zustandsgebiete:	Gas (bzw. Dampf), Flüssigkeit, Feststoff	
Zweiphasengebiet:	Nassdampfgebiet (Flüssigkeit / Gas) Schmelzgebiet (Feststoff / Flüssigkeit) Sublimationsgebiet (Feststoff / Gas)	
Phasengrenzkurven:	Taulinie ("), Siedelinie (') Erstarrungslinie (⁺⁺), Schmelzlinie (⁺) Desublimationslinie ("), Sublimationslinie (⁺)	
Kritischer Punkt (Index <i>c</i>):	Tau- und Siedelinie treffen sich mit horiz. Tangente	
Tripellinie:	Bei T_{Tr} und p_{Tr} stehen drei Phasen miteinander im Gleichgewicht (Gas, Flüssigkeit, Feststoff)	
Siedende Flüssigkeit:	Flüssigkeit auf der Siedelinie	
Gesättigter Dampf:	Gas (Dampf) auf der Taulinie	

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

Zustandsänderungen im p,v-Diagramm

Isobare Erwärmung bei p_{Tr}

- A: Feststoff, Ausgangspunkt der Zustandsänderung
- $A \rightarrow B$: *T* steigt bei geringer Zunahme von *v*
- B: Schmelzlinie erreicht, erster Flüssigkeitstropfen bildet sich
- $B \rightarrow C$: Schmelzprozess; *T*, *p* bleiben konstant, *v* steigt (in der Regel) von *v*⁺ nach *v*⁺⁺

- C: Erstarrungslinie erreicht, der Feststoff ist vollständig geschmolzen
- $C \rightarrow D$: Flüssigkeitsgebiet; *T* steigt, *v* nimmt langsam zu
- D: Siedelinie erreicht, die erste Gasblase (Dampfblase) bildet sich
- $D \rightarrow E$: Verdampfungsprozess; *T*, *p* bleiben konstant, *v* steigt von *v'* nach *v''*
- E: Taulinie erreicht, die Flüssigkeit ist vollständig verdampft
- $E \rightarrow F$: Gasgebiet, *T* steigt, *v* nimmt zu

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1.1 *p,v -* Diagramm

Isobare Erwärmung bei $p < p_{Tr}$

- G: Feststoff, Ausgangspunkt der Zustandsänderung
- $G \rightarrow H$: *T* steigt bei geringer Zunahme von v
- H: Sublimationslinie erreicht, erste Gasblase bildet sich
- $H \rightarrow I$: Sublimationsprozess; *T*, *p* bleiben konstant, *v* steigt von *v*⁺ nach *v*"
- I: Desublimationslinie erreicht, der Feststoff ist vollständig verdampft

Erwärmung bei $p > p_c$

- L: Flüssigkeit, Ausgangspunkt der Zustandsänderung
- L \rightarrow M: *T* steigt; *p* wird so geführt, dass das Nassdampfgebiet vermieden wird \Box kontinuierlicher Übergang von Flüssigkeit zu Gas
- Bei p > p_c oder T > T_c gibt es keine klare Abgrenzung zwischen Flüssigkeit und Gas;
 Stoffe in diesem Zustand werden als überkritisches Fluid bezeichnet

4.1.2 *p,T* - Diagramm

Das p,v-Diagramm ist nur eine der beiden üblichen Projektionen der p,v,T-• Fläche, es gibt mehrere

p,*T*-Diagramm

In den Zweiphasengebieten besteht ein eindeutiger Zusammenhang von Druck und Temperatur; aus einer vorgegebenen Temperatur folgt z.B. eindeutig ein **Dampfdruck** und aus einem vorgegebenen Druck eindeutig eine **Siedetemperatur**

 \Box > Im *p*,*T*-Diagramm fallen die Zweiphasengebiete zu Kurven zusammen

- Nassdampfgebiet \rightarrow **Dampfdruckkurve**
- Schmelzgebiet \rightarrow Schmelzdruckkurve
- Sublimationsgebiet \rightarrow Sublimationsdruckkurve
- Aus der Tripellinie im p, v-Diagramm wird im p, T-Diagramm ein **Tripelpunkt** (das Dreiphasengleichgewicht herrscht nur exakt bei T_{Tr} , p_{Tr})
- Der kritische Punkt begrenzt oben die Dampfdruckkurve
- Verschiedene Stoffe zeigen erfahrungsgemäß ein sehr unterschiedliches Verhalten (z.B. Luft und Wasser) – Worin liegen diese Unterschiede begründet?

- Welche Gemeinsamkeiten gibt es zwischen verschiedenen Stoffen sind die oben gemachten Aussagen übertragbar?
- Die allgemeinen Aussagen sind übertragbar; das unterschiedliche Verhalten verschiedener fluider Stoffe liegt vor allem in der unterschiedlichen Lage des kritischen Punkts begründet
- Werden *p*, *T* und *v* auf die jeweiligen kritischen Größen bezogen, sehen die Zustandsflächen verschiedener Stoffe oft ähnlich aus
- Das einfache Korrespondenzprinzip (einfacher Ähnlichkeitsansatz) geht davon aus, dass Stoffdaten übertragbar sind, wenn die (thermischen) Zustandsgrößen auf ihre Werte am kritischen Punkt bezogen werden
- Für technische Berechnungen reicht das einfache Korrespondenzprinzip nicht • aus (allenfalls für grobe Überschlagsrechnungen)

4.1.3 Ähnlichkeit von Fluiden

Molmasse und kritische Eigenschaften einiger schwach polarer Fluide

Substanz	М	T _c	Pc	Pc			
	(g mol ⁻¹)	(K)	(MPa)	(kg m ⁻³)			
Normale Alkane							
Methan	16.043	190.564	4.599	162.66			
Ethan	30.070	305.322	4.872	206.60			
Propan	44.097	369.825	4.248	220.48			
n-Butan	58.123	425.125	3.796	227.84			
n-Pentan	72.150	469.700	3.370	232.00			
n-Hexan	86.177	507.820	3.034	233.18			
n-Heptan	100.204	540.130	2.736	232.00			
n-Octan	114.231	569.320	2.497	234.90			
Andere nicht oder schwach polare Fluide							
Argon	39.948	150.687	4.863	535.60			
Sauerstoff	31.999	154.595	5.043	436.14			
Stickstoff	28.013	126.192	3.396	313.30			
Ethen	28.054	282.350	5.042	214.24			
Isobutan	58.123	407.817	3.640	224.36			
Cyclohexan	84.161	553.600	4.078	273.02			
SF ₆	146.054	318.723	3.755	742.15			

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1.3 Ähnlichkeit von Fluiden

berlin

Molmasse und kritische Eigenschaften einiger polarer Fluide

Substanz	M	Tc	pc	Pc			
	(g mol ⁻¹)	(K)	(MPa)	(kg m ⁻³)			
	Halogeniert	e Kohlenwa	asserstoffe				
CFC 11	137.368	471.06	4.394	565.0			
CFC12	120.914	385.12	4.136	565.0			
HCFC 22	86.469	369.28	4.989	520.0			
HFC 32	52.024	351.35	5.795	427.0			
CFC 113	187.376	487.21	3.392	560.0			
HCFC 123	152.931	456.82	3.672	553.0			
HFC 125	120.022	339.33	3.629	571.3			
HFC 134a	102.032	374.18	4.056	508.0			
HFC 143a	84.040	345.86	3.764	434.1			
HFC 152a	66.051	386.41	4.520	368.0			
Andere polare Fluide							
CO ₂	44.010	304.13	7.377	467.6			
Ammoniak	17.031	405.40	11.339	225.0			
Wasser	18.015	647.10	22.064	322.0			

p,*v*-Diagramm von Stickstoff und HFC-134a (CH₂F-CF₃)

Prof. Dr.-Ing. habil. Jadran Vrabec

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1.3 Ähnlichkeit von Fluiden

- Achtung: doppelt-logarithmische Auftragung auch bei so gut vergleichbaren Stoffen wie Stickstoff und HFC-134a (einem fluorierten Ethan-Derivat) führen einfache Ähnlichkeitsansätze schon in der Bestimmung des spezifischen Volumens zu Fehlern von > 20%
- Besser würde der Vergleich z.B. für Stickstoff und Sauerstoff aussehen (beides Stoffe aus zweiatomigen quadrupolaren Molekülen) $2p_{c}$
- Bei Verwendung von Ähnlichkeitsansätzen muss für Abschätzungen auf die molekulare Ähnlichkeit der Stoffe geachtet werden

4.1.4 Isenthalpen und Isentropen im *p*,*v*- Diagramm

- Für die Darstellung technischer Prozesse werden nicht nur Zusammenhänge zwischen den thermischen Zustandsgrößen, sondern auch Angaben für die Enthalpie und die Entropie benötigt
- Wegen p = p(T,v) lässt sich aus gegebenen Werten von p und v auch T (iterativ) berechnen
- \implies Mit h = h(T,p) oder h = h(T,v) lässt sich zu jedem Punkt im p,v-Diagramm die Enthalpie berechnen
- □ **Isenthalpen** lassen sich in das *p*,*v*-Diagramm einzeichnen
- \Rightarrow Mit s = s(T,p) oder s = s(T,v) lässt sich zu jedem Punkt im p,v-Diagramm die Entropie berechnen
- ⇒ Isentropen lassen sich in das *p*,*v*-Diagramm einzeichnen

4.1.4 Isenthalpen und Isentropen im *p*,*v*- Diagramm

berlin

f. Dr.-Ing. habil. Jadran Vrabe

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

- 4.1.5 Zustandsgrößen im Nassdampfgebiet
- Im Nassdampfgebiet setzt sich jeder Zustand aus gesättigtem Dampf und siedender Flüssigkeit zusammen

Zustandsgrößen müssen aus den Eigenschaften der im Gleichgewicht stehenden Phasen berechnet werden

• Für die Enthalpie eines zweiphasigen Systems gilt

$$H = \underbrace{H'}_{flüssige} + \underbrace{H''}_{gasförmige} = m' \cdot h'(T) + m'' \cdot h''(T)$$

• Zur Charakterisierung des Systems wird der **Dampfgehalt** *x* eingeführt

$$x = \frac{m''}{m_{\text{ges.}}} = \frac{m''}{m' + m''}$$

$$\square > m'' = x \cdot m$$
 und $m' = (1 - x) \cdot m$

4.1.5 Zustandsgrößen im Nassdampfgebiet

• Damit folgt für die Enthalpie im Nassdampfgebiet

$$h = H/m = (1 - x) \cdot h'(T) + x \cdot h''(T) = h'(T) + x \cdot \underbrace{(h''(T) - h'(T))}_{\Delta h_V}$$

- Die Größe Δh_{V} wird als **Verdampfungsenthalpie** bezeichnet
- Die für die Enthalpie angestellten Überlegungen lassen sich auf beliebige spezifische oder molare Größen übertragen
- Für eine beliebige spezifische oder molare Zustandsgröße z (z = h, s, v, …
 aber nicht r = 1/v) gilt im Nassdampfgebiet

$$z(T,x) = z'(T) + x \cdot (z''(T) - z'(T))$$

• Für Zustände im Zweiphasengebiet (eines reinen Stoffs) ist der Druck stets gleich dem **Dampfdruck** $p_s(T)$

Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1.5 Zustandsgrößen im Nassdampfgebiet

 $\ \ \Box > \ \ {\rm Die \ Siedetemperatur \ } T_{\rm s} \ \ {\rm lässt \ sich \ eindeutig \ aus \ dem \ Dampfdruck \ } p_{\rm s} \ \ {\rm berechnen;} \ \ {\rm es \ gilt \ also \ ebenso}$

$$z(\rho_{s},x) = z'(\rho_{s}) + x \cdot (z''(\rho_{s}) - z'(\rho_{s}))$$

 \Rightarrow Der **Dampfgehalt** lässt sich aus T_s oder p_s und jeder beliebigen spezifischen oder molaren Zustandsgröße berechnen

$$x = \frac{z(T, x) - z'(T)}{z''(T) - z'(T)} = \frac{z(\rho_{s}, x) - z'(\rho_{s})}{z''(\rho_{s}) - z'(\rho_{s})}$$

- Das p,v-Diagramm ist f
 ür die Darstellung der Energetik eines Prozesses nicht gut geeignet
- ⇒ Einführung typischer Arbeitsdiagramme

4.1.6 Weitere Diagramme: *T*,*s*- Diagramm

berlin

of. Dr.-Ing. habil. Jadran Vrabec

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.1.6 Weitere Diagramme: log p,h- Diagramm

- Das *T*,*s*-Diagramm ermöglicht ein direktes Ablesen von Entropiedifferenzen (und damit z.B. eine Berechnung von Exergieverlusten)
- Es fehlt jedoch eine direkte Auftragung der Enthalpie für die Einschätzung von Energieumwandlungsprozessen
- Das *h,s*-Diagramm ist ein sehr gut geeignetes Diagramm f
 ür die Darstellung energetischer Prozesse
- Die Entropie als Ordinate ist schwer vorstellbar und bei vielen Ingenieuren unbeliebt
- Das *p,h* oder log *p,h*-Diagramm ist vor allem in der Kälte- und Klimatechnik das übliche Arbeitsdiagramm
- In der Energietechnik wird eher auf *T*,*s* und *h*,*s*-Diagramme zurückgegriffen

4.2 Molekulare Wechselwirkungen

- Der entscheidende Unterschied zwischen idealem Gas und realem Stoff ist, dass reale Moleküle eben doch eine räumliche Ausdehnung haben und miteinander wechselwirken
- Für Naturwissenschaftler (speziell physikalische Chemie) die sich mit Stoffeigenschaften von Fluiden beschäftigen, ist dies der Ansatzpunkt für die Beschreibung realer Stoffe
- Es wird zwischen **anziehenden** und **abstoßenden** Wechselwirkungen unterschieden
- Das Lennard-Jones-Potential wird für deren Modellierung häufig verwendet

$$u = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

- Es hat zwei Parameter, die Energie ε und den "Kugeldurchmesser" σ

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.3 Kubische Zustandsgleichungen

Boyle-Mariotte (17. Jh.)

 $p = \frac{RT}{T}$ **Ideales Gas** •

van der Waals (1873)

Moleküle haben ein Eigenvolumen; ٠ der Druck ist höher, weil ein Teil des Volumens nicht frei zur Verfügung steht

$$b = \frac{RT}{v-b}$$

(1627 - 1692)

(1620 - 1684)

- Moleküle ziehen sich gegenseitig an, wodurch der Druck geringer ist •
- van der Waals-Gleichung •

$$v^{3} - \left(\frac{RT}{p} + b\right)v^{2} + \frac{a}{p}v - \frac{ab}{p} = 0$$

Johannes Diderik van der Waals (1837 - 1923)

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.2 Molekulare Wechselwirkungen

- Alle Eigenschaften von Stoffen lassen sich daraus mit den Methoden der statistischen Thermodynamik (z.B. Molekulardynamik, Monte Carlo Simulationen) berechnen
- Die Argumentation mit mittleren Molekülabständen ist eine grobe Vereinfachung; tatsächlich sind Moleküle nicht kugelförmig
- Auch quantitativ exakte Berechnungen von Stoffdaten gelingen mittlerweile (nach Kalibrierung der Modellparameter an makroskopische Messungen)
- Molekulare Modellvorstellungen beeinflussen seit mehr als hundert Jahren die Formulierung von Zustandsgleichungen für reale Fluide

4.3 Kubische Zustandsgleichungen

Verlauf zweier Isothermen der van der Waals-Gleichung

Isotherme T_1

- \Box ein Schnittpunkt mit $p_{\rm b}$
- rightarrow blackdrei Schnittpunkte mit p_a
- 1a₁: Flüssigkeit (v klein, ($\partial p / \partial v$)_T groß)
- $1a_2$: unmöglich ($(\partial p / \partial v)_T > 0$)
- $1a_3$: Gas (v groß, $(\partial p / \partial v)_T$ klein)
- 1b: Flüssigkeit (v klein, $(\partial p / \partial v)_T$ groß)

Isotherme T_2

- rightarrow ein Schnittpunkt mit $p_{\rm b}$
- \Rightarrow ein Schnittpunkt mit p_a (nicht im Bildbereich)

2b: überkritisches Fluid mittlerer Dichte 2a: überkritisches Fluid geringer Dichte

4.3 Kubische Zustandsgleichungen

- Welcher der beiden Punkte (1a₁ oder 1a₃) beschreibt den tatsächlichen Zustand des Fluids?
 - $p_a < p_s(T_1) \implies$ gasförmiger Zustand (1 a_3) stabil
 - $p_a > p_s(T_1) \implies$ flüssiger Zustand (1a₁) stabil
- Unterkritische Isothermen ($T < T_c$) haben offenbar drei reale Lösungen
- Überkritische Isothermen ($T > T_c$) haben eine reale und zwei imaginäre Lösungen

□ Der Umschlagpunkt markiert (in Abhängigkeit von *a* und *b*) den kritischen Punkt

⇒ Die Parameter der van der Waals-Gleichung können aus den kritischen Daten bestimmt werden

$$a = \frac{27}{64} \frac{R^2 T_c^2}{p_c}$$
 $b = \frac{1}{8} \frac{R T_c}{p_c}$

4.3 Kubische Zustandsgleichungen

- Mit *a* und *b* ergibt sich $v_{c,VDW}$ zu $v_{c,VDW} = v_{VDW}(T_c, p_c)$
- Jeder Zustand lässt sich beschreiben als $v_{VDW} = v(T/T_c, p/p_c)$
- ⇒ Einfaches Korrespondenzprinzip: Bezogen auf die kritischen Parameter verhalten sich alle Stoffe gleich
- Aber: $V_{c,VDW} \neq V_c$
- □ Die van der Waals-Gleichung hat mindestens einen Parameter zu wenig
- Die Genauigkeit der van der Waals-Gleichung ist generell unzureichend, sie ermöglichte jedoch erstmals eine qualitativ korrekte Beschreibung des fluiden Zustandsgebiets (Nobelpreis 1910)
- Zur Verbesserung der Gleichungsform wird der anziehende Term temperaturabhängig gemacht

4.3 Kubische Zustandsgleichungen

Kubische Zustandsgleichung nach **Redlich-Kwong** (1949) \Box

$$p = rac{RT}{v-b} - rac{a}{\sqrt{T}(v+b)v}$$

mit
$$a = 0,42748 \frac{R^2 T_c^{2,5}}{p_c}$$
 und $b = 0,08664 \frac{R T_c}{p_c}$

• Wie ist für $T < T_c$ zu bestimmen, ob ein Druck kleiner oder größer als p_s ist?

→ Phasengleichgewicht herrscht vor wenn

T' = T''thermisches Gleichgewicht p' = p''mechanisches Gleichgewicht

g' = h' - Ts' = g'' = h'' - Ts'' stoffliches Gleichgewicht

 $\Rightarrow g =$ freie Enthalpie, Gibbs Energie

Thermisches und mechanisches Gleichgewicht liefern die Bedingung ٠

 $p(T,v') = p(T,v'') \implies 1a_1 \text{ und } 1a_3 \text{ in der Abbildung oben}$

4.4 Berechnung des Phasengleichgewichts

• Die stoffliche Gleichgewichtsbedingung kann für thermische Zustandsgleichungen p = p(T, v) übersetzt werden in

$$g = u + pv - Ts \quad \Box > u' + pv' - Ts' = u'' + pv'' - Ts'' \Box >$$

$$u'' - u' + p(v'' - v') - T(s'' - s') = 0$$

$$Tds = du + pdv \implies T(s'' - s') = \int_{u'}^{u''} du + \int_{v'}^{v''} pdv = u'' - u' + \int_{v'}^{v''} pdv$$

einsetzen ergibt **Maxwell-Kriterium**: $p \cdot (v'' - v') = \int p$

- Die Flächen 1 und 2 müssen gleich groß sein,
 p_s kann iterativ bestimmt werden
- Problem: Iterative Lösungen brauchen Startwerte, was numerisch oft ungünstig ist
- Eine eigenständige Beschreibung der Phasengrenze (mindestens $p_s(T)$, besser auch ρ' und ρ'') ist für viele Anwendungen vorteilhaft

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.4 Gleichung von Clausius- Clapeyron

- Für den Dampfdruck gilt die Clausius-Clapeyron-Gleichung
- Im Phasengleichgewicht Flüssigkeit / Dampf gilt

g'(T,p) = g''(T,p)vollständiges Differential: $dg' = \left(\frac{\partial g'}{\partial T}\right)_p dT + \left(\frac{\partial g'}{\partial p}\right)_{p'}$

Rudolf Clausius Benoît Clapeyron (1822-1888) (1799-1864)

Da g' = g" entlang der gesamten Phasengrenze gilt, müssen die vollständigen

Differentiale von g' und g'' gleich sein

$$dg' - dg'' = (-s'dT + v'dp) - (-s''dT + v''dp) = 0$$
$$\Longrightarrow \frac{dp}{dT} = \frac{s'' - s'}{v'' - v'}$$

dp

• Für den Verdampfungsvorgang bei *T* = const. gilt *dp* = 0

$$\implies ds = \frac{dh}{T}, \quad s'' - s' = \frac{h'' - h'}{T} = \frac{\Delta h_V}{T}$$

4.4 Gleichung von Clausius- Clapeyron

- Die Gleichungen von Clausius-Clapeyron gelten f
 ür alle drei Phasen
 überg
 änge exakt, sie verbinden thermische und kalorische Zustandsgr
 ö
 ßen auf der Phasengrenze
- Näherungen ermöglichen die Abschätzung des Dampfdrucks bei niedrigen Temperaturen (max. etwa 0,1·p_k, oft einige bar):

$$v' \ll v''$$
, $v'' = \frac{RT}{p}$ $\Delta h_v(T) = \Delta h_{v,o} = \text{const}$ $\frac{dp}{dT} = \frac{\Delta h_{v,o}p}{RT^2}$
nach Umformung: $\frac{dp}{p} = \frac{\Delta h_{v,o}}{R} \cdot \frac{dT}{T^2}$ Integration ergibt: $\ln\left(\frac{p}{p_o}\right) = \frac{\Delta h_{v,o}}{R}\left(\frac{1}{T_0} - \frac{1}{T}\right)$

- In einem ln(*p*),1/*T*-Diagramm sind Dampfdruckkurven in erster Näherung Geraden
- Mit zwei gegebenen Dampfdrücken lässt sich /*R* und damit näherungsweise der Verlauf der Dampfdruckkurve berechnen
- Häufig finden sich in der Literatur **Hilfsgleichungen** für die Beschreibung von $p_s(T)$, $\rho'(T)$ und $\rho''(T)$

Beispiel Kohlendioxid

$$\ln\!\left(\frac{p_{\rm s}}{p_{\rm c}}\right) = \frac{T_{\rm c}}{T} \cdot \left\{\sum_{i=1}^{4} a_i \left(1 - \frac{T}{T_{\rm c}}\right)^{t_i}\right\}$$

Dampfdruck (Wagner-Form)

with *T*c = 304.128 2 K, *p*c = 7.377 3 MPa, *a*1 = -7.060 208 7, *a*2 = 1.939 121 8, *a*3 = -1.646 359 7, *a*4 = -3.299 563 4, *t*1 = 1.0, *t*2 = 1.5, *t*3 = 2.0, und *t*4 = 4.0

$$\ln\!\left(\frac{\rho'}{\rho_{\rm c}}\right) = \sum_{i=1}^4 a_i \left(1 - \frac{T}{T_{\rm c}}\right)^{t_i}$$

with $T_c = 304.128 \ 2 \ K$, $r_c = 467.6 \ kg \ / m^3$, $a_1 = 1.924 \ 510 \ 8$, $a_2 = -0.623 \ 855 \ 55$, $a_3 = -0.327 \ 311 \ 27$, $a_4 = 0.392 \ 451 \ 42$, $t_1 = 0.34$, $t_2 = 1/2$, $t_3 = 10/6$, und $t_4 = 11/6$

$$\ln\!\left(\frac{\rho}{\rho_{\rm c}}^{"}\right) = \sum_{i=1}^{5} a_i \left(1 - \frac{T}{T_{\rm c}}\right)^{t_i}$$

Taudichte

with $T_c = 304.128 \ 2 \ K$, $r_c = 467.6 \ kg \ / m^3$, $a_1 = -1.707 \ 487 \ 9$, $a_2 = -0.822 \ 746 \ 70$, $a_3 = -4.600 \ 854 \ 9$, $a_4 = -10.111 \ 178$, $a_5 = -9.742 \ 252$, $t_1 = 0.340$, $t_2 = 1/2$, $t_3 = 1$, $t_4 = 7/3$ und $t_5 = 14/3$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

Thermo Prof. Dr.-Ing. habil. Jadran Vrabec

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.5 Virialform der Zustandsgleichung

- Solche Hilfsgleichungen erlauben eine sehr genaue Beschreibung der Größen auf Phasengrenzen
- Kubische Gleichungen beschreiben homogene Zustände für viele technische Anwendungen nicht genau genug
- ☐ Das **Virial-Konzept** dient zur genauen Beschreibung gasförmiger Zustände
- Der Realgasfaktor ist definiert als

$$z = \frac{p}{\rho RT}$$

 Ideales Gas: *z* = 1 (=const.); reales Gas: *z* = *z*(*T*,*r*) ≠ 1

4.5 Virialform der Zustandsgleichung

- Empirische Beobachtung: Mit zunehmender Dichte bzw. zunehmendem Druck weicht das reale Verhalten eines Gases immer stärker vom idealen Verhalten ab
- \Box > Bei konstanter Temperatur muss sich *z* daher als *z*(*r*) oder *z*(*p*) modellieren lassen

$$z = \frac{p}{\rho RT} = A + B\rho + C\rho^{2} + \dots \Big|_{T=const}$$

ozw.
$$z = \frac{p}{\rho RT} = A' + B'p + C'p^{2} + \dots \Big|_{T=const}$$

 Im Grenzfall des idealen Gases muss die Reihenentwicklung in die Zustandsgleichung des idealen Gases übergehen

A = A' = 1 Erster Virialkoeffizient

B = zweiter Virialkoeffizient (in der Dichteentwicklung)
 C = dritter Virialkoeffizient (in der Dichteentwicklung)
 B',C' = Virialkoeffizienten in der Druckentwicklung

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.5 Virialform der Zustandsgleichung

• Eine Umformung der Virialentwicklung ergibt

$$\frac{z-1}{\rho} = B + C\rho + \dots \Big|_{T=\text{const.}}$$

 B und C lassen sich f
ür eine gegebene Temperatur aus gemessenen Dichten (r(T,p) bzw. p(T,r)) bestimmen

• Die Virialkoeffizienten sind Funktionen der Temperatur

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik

imik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.5 Virialform der Zustandsgleichung

- Die Temperaturabhängigkeit muss modelliert werden, um zu praktisch anwendbaren Zustandsgleichungen zu kommen
- ☐> Die Virialform der Zustandsgleichung in der Dichteentwicklung

$$z = \frac{\rho}{\rho RT} = 1 + B(T)\rho + C(T)\rho^2 + \dots \quad (Kammerlingh Onnes, 1901)$$

bzw. der Druckentwicklung:
$$z = \frac{p}{\rho RT} = 1' + B'(T)p + C'(T)p^2 + \dots$$

mit
$$B' = \frac{B}{RT}$$
 und $C' = \frac{C - B^2}{(RT)^2}$

- Die Dichteentwicklung konvergiert schneller und wird heute fast ausschließlich verwendet
- Die statistische Thermodynamik hat gezeigt, dass
 - B Wechselwirkungen zwischen zwei Molekülen beschreibt
 - C Wechselwirkungen zwischen drei Molekülen beschreibt
- Aus der statistischen Thermodynamik sind exakte Lösungen für die Temperaturabhängigkeit von B(T) und C(T) bekannt

4.5 Virialform der Zustandsgleichung

berlin

Temperaturabhängigkeit von B und C

4.5 Virialform der Zustandsgleichung

• Die Temperaturabhängigkeit wird meist empirisch modelliert

$$B(T) = \sum_{i} b_{i} T^{t_{i}} \quad \text{und} \quad C(T) = \sum_{i} c_{i} T^{t_{i}}$$
$$z = \frac{p}{\rho RT} = 1 + \rho \cdot \sum_{i} b_{i} T^{m_{i}} + \rho^{2} \cdot \sum_{i} c_{i} T^{n_{i}} + \dots$$

- Je nach angestrebter Genauigkeit je zwei bis vier b_i und c_i, zum Teil auch zur Berücksichtigung höherer Virialkoeffizienten
- An passung der b_i und c_i direkt an Messdaten (meist $p(T,\rho)$)
- Für technische Anwendungen benötigt man unbedingt auch kalorische Größen (*h*, *u*, *s*, *c*_p, *c*_v, …)
- Wie kann können diese Größen aus einer Gleichung für $p(T,\rho)$ bzw. p(T,v) berechnet werden?

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.6 Berechnung kalorischer Zustandsgrößen

berlin

• Die Virialzustandsgleichung (virial equation of state) kann das Gasgebiet (hier Stickstoff) sehr genau beschreiben

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.6 Berechnung kalorischer Zustandsgrößen

berlin

Beispiel
$$h(T,v)$$
 $h = u + pv$ $dh = du + d(pv)$
 $u = u(T,v) \implies du = \left(\frac{\partial u}{\partial T}\right)_{v} dT + \left(\frac{\partial u}{\partial v}\right)_{T} dv$
 $du = Tds - pdv \implies \left(\frac{\partial u}{\partial v}\right)_{T} = T\left(\frac{\partial s}{\partial v}\right)_{T} - p$

 $f = u - Ts \implies df = du - Tds - sdT = - pdv - sdT$

rightarrow f = freie Energie, Helmholtz Energie

$$f = f(T, v) \qquad \Longrightarrow \qquad df = \left(\frac{\partial f}{\partial T}\right)_{V} dT + \left(\frac{\partial f}{\partial v}\right)_{T} dv$$
$$-s \qquad -p$$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.6 Berechnung kalorischer Zustandsgrößen

berlin

Satz von Schwarz, Gleichheit der 2. Ableitungen liefert

$$\frac{\partial^2 f}{\partial T \partial v} = -\left(\frac{\partial s}{\partial v}\right)_T = \frac{\partial^2 f}{\partial v \partial T} = -\left(\frac{\partial p}{\partial T}\right)_v$$
$$\implies \left(\frac{\partial u}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v - p = T^2 \left(\frac{\partial (p/T)}{\partial T}\right)_v$$
$$\implies dh = c_v dT + T^2 \left(\frac{\partial (p/T)}{\partial T}\right)_v dv_T + d(pv)$$

- $h(T,v) h(T_o, v_o)$ kann jetzt aus Integration bestimmt werden
- Wichtiger Trick: v_o wird so groß gewählt, dass c_v durch c_v^o (des ideales Gases) ersetzt werden kann

$$h(T,v) = \frac{\int_{T_0,v_0}^{T_v,v_0} + \int_{T_v,v_0}^{T_v,v_0} dh + h(T_0,v_0)}{\int_{T_0,v_0}^{T_v,v_0} + \int_{T_v,v_0}^{T_v,v_0} \left(\frac{\partial(p/T)}{\partial T}\right)_v dv + pv + h(T_0,v_0)} \Big|_{v_0 \to \infty}$$

Inermo Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik

Fakultät III – Prozesstechnik

4.6 Berechnung kalorischer Zustandsgrößen

Aus thermischen Zustandsgleichungen können auch kalorische Zustandsgrößen berechnet werden, wenn bzw. bekannt ist

• Aus analogen Betrachtungen ergibt sich

$$u(T,v) = \int_{T_0}^{T} c_v^0 dT + T^2 \int_{T,v_0}^{T,v} \left(\frac{\partial (p/T)}{\partial T} \right)_v dv + u(T_0,v_0) \bigg|_{v_0 \to \infty}$$
$$s(T,v) = \int_{T_0}^{T} \frac{c_v^0}{T} dT + R \cdot \ln\left(\frac{v}{v_0}\right) + T^2 \int_{T,v_0}^{T,v} \left[\left(\frac{\partial (p)}{\partial T} \right)_v - \frac{R}{v} \right] dv + s(T_0,v_0) \bigg|_{v_0 \to \infty}$$

- In vielen Bereichen sind thermische Zustandsgleichungen heute die Basis von technischen Stoffwertberechnungen
- Die Integration macht die Berechnungen jedoch aufwendig insbesondere für kompliziertere Gleichungsformen, die nicht analytisch integriert werden können

4.7 Fundamentalgleichungen

- Der 2. Hauptsatz der Thermodynamik enthält alle Informationen über ein thermodynamisches System, und beschreibt den Zustand eines Systems vollständig
- Für geschlossene Systeme gilt

 $T ds = du + p dv \implies du = T ds - p dv \implies u = u(s,v)$

• Für stationäre Fließprozesse gilt

$$T ds = dh - v dp \iff dh = T ds + v dp \iff h = h(s, p)$$

 Durch Legendre-Transformation lässt sich zeigen, dass folgende Funktionen gleichwertig sind

$$f = f(T,v)$$
$$g = g(T,p)$$

4.7 Fundamentalgleichungen

• Die Auswertung der vollständigen Differentiale ergibt

u(*s*,*v*), *h*(*s*,*p*), *f*(*T*,*v*) und *g*(*p*,*T*) werden positive Richtung als die **Fundamentalgleichungen** der Thermodynamik (thermodynamische Potentiale, kanonische Gleichungen) bezeichnet

Merkregel

"Unser Vater fand tausend Gulden Papier hinter'm Schrank" "Unglaublich viele Forscher trinken gerne Pils hinter'm Schreibtisch"

4.7 Fundamentalgleichungen

Aus Fundamentalgleichungen lassen sich alle Zustandsgrößen durch Ableitungen berechnen (also keine Integration notwendig)

- u(s,v) und h(s,p) haben keine praktische Bedeutung, weil s nicht direkt gemessen werden kann
- Moderne empirische Zustandsgleichungen sind heute in der Form

$$\frac{f(T,v)}{RT} = \phi(\tau,\delta) = \phi^{o}(\tau,\delta) + \phi^{r}(\tau,\delta) \quad \text{mit} \quad \tau = \frac{T_{k}}{T} \quad \text{mit} \quad \delta = \frac{v_{k}}{v} = \frac{\rho}{\rho_{k}}$$

Einige Zustandsgrößen $Z = \frac{\rho v}{RT} = 1 + \delta \phi^{r}_{\delta} \quad \text{und} \quad B = v_{k} \cdot \lim_{\delta \to 0} \phi^{r}_{\delta}$
 $\frac{u}{RT} = \tau \left(\phi^{o}_{\tau} + \phi^{r}_{\tau}\right) \quad \text{und} \quad \frac{h}{RT} = 1 + \tau \left(\phi^{o}_{\tau} + \phi^{r}_{\tau}\right) + \delta \phi^{r}_{\delta}$
 $\frac{c_{v}}{R} = -\tau^{2} \left(\phi^{o}_{\tau\tau} + \phi^{r}_{\tau\tau}\right) \quad \text{und} \quad \frac{c_{\rho}}{R} = -\tau^{2} \left(\phi^{o}_{\tau\tau} + \phi^{r}_{\tau\tau}\right) + \frac{(1 + \delta \phi^{r}_{\delta} - \delta \tau \phi^{r}_{\delta\tau})^{2}}{1 + 2\delta \phi^{r}_{\delta} + \delta^{2} \phi^{r}_{\delta\delta}}$
 $\frac{s}{R} = \tau \left(\phi^{o}_{\tau} + \phi^{r}_{\tau}\right) - \phi^{o} - \phi^{r} \quad \text{mit} \quad \phi^{r}_{\delta} = \left(\frac{\partial \phi^{r}}{\partial \delta}\right)_{\tau}, \quad \phi^{r}_{\tau} = \left(\frac{\partial \phi^{r}}{\partial \tau}\right)_{\delta}, \quad \phi^{r}_{\delta\tau} = \left(\frac{\partial^{2} \phi^{r}}{\partial \delta \partial \tau}\right)$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.8 Beschreibung des gesamten Zustandsgebiets

Die Virialform der Zustandsgleichung wurde bisher nur als Gleichung für das Gasgebiet diskutiert

- Vorwiegend sowjetische Zustandsgleichungen der 1970er Jahre

$$z(T,\rho) = \frac{\rho v}{RT} = 1 + \sum_{i=1}^{8-10} \sum_{j=1}^{8-10} a_{ij} T^{i} \rho^{j}$$

- Die Parameter a_{ij} wurden an $p \rho T$ -Daten angepasst
- Später auch Anpassung an Phasengleichgewichtsdaten $p_s(T)$, $\rho'(T)$, $\rho''(T)$ und vereinzelt auch an kalorische Größen

ermo

• Bis zu 100 anpassbare Parameter führen zu numerischen Problemen

• **Trick:** Einführung von Exponentialfunktionen

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

• Benedict-Webb-Rubin-Gleichung (1940)

$$z(T,\rho) = \frac{\rho v}{RT} = 1 + \sum_{i=1}^{6} a_i T^{t_i} \rho^{d_i} + \sum_{i=7}^{8} a_i T^{t_i} \rho^{d_i} \exp(-(\rho/\rho_c))^2$$

• Bender-Gleichung (1970)

$$z(T,\rho) = \frac{\rho v}{RT} = 1 + \sum_{i=1}^{13} a_i T^{t_i} \rho^{d_i} + \sum_{i=14}^{19} a_i T^{t_i} \rho^{d_i} \exp(-(\rho/\rho_c))^2$$

• Modified-Benedict-Webb- Rubin-Gleichung (1973)

$$z(T,\rho) = \frac{\rho v}{RT} = 1 + \sum_{i=1}^{19} a_i T^{t_i} \rho^{d_i} + \sum_{i=20}^{32} a_i T^{t_i} \rho^{d_i} \exp(-(\rho/\rho_c))^2$$

- ☐> Gleichungen dieses Typs ermöglichen ab ca. 20 anpassbaren Koeffizienten gute Genauigkeiten
- Seit Mitte der 1980er Jahre werden sehr genaue Zustandsgleichungen hauptsächlich als Fundamentalgleichungen in $\varphi = f/(RT)$ entwickelt
- Alle Zustandsgrößen (einschließlich Phasengleichgewicht) können allein aus Ableitungen berechnet werden

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.8 Fundamentalgleichungen

berlin

Zustandsgleichungen in Form der reduzierten freien Energie

Thermo Prof. Dr.-Ing. habil. Jadran Vrabed

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.8 Gleichungen für jeden Genauigkeitsanspruch

- Zustandsgleichungen, die alle f
 ür einen (sehr gut vermessenen) Stoff vorliegenden Messwerte thermodynamischer Gr
 ößen innerhalb ihrer experimentellen Unsicherheit wiedergeben k
 önnen, werden als Referenzgleichungen bezeichnet
- Heute stehen f
 ür einige Reinstoffe Stoffdatenmodelle unterschiedlicher Genauigkeit zur Verf
 ügung
- Beispiel: Wiedergabe hochgenauer Dichtemessungen durch fünf verschiedene Zustandsgleichungen; die Daten decken Gasgebiet, Flüssigkeit und überkritisches Fluid ab

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

4.8 Gleichungen für jeden Genauigkeitsanspruch

berlin

Kapitel 4: Verständnisfragen

- Zur Darstellung der Eigenschaften eines Reinstoffs wird häufig ein *p*,*T* bzw. *p*,*v* Diagramm verwendet. Wie hängen diese beiden Diagramme zusammen?
- Welche drei Aggregatzustände gibt es und wie heißen jeweils die Phasenübergänge zwischen diese Zuständen?
- Zeichenen Sie ein p,v-Diagramm f
 ür einen Reinstoff. Kennzeichnen Sie Siedelinie, Taulinie, sowie den kritischen Punkt. Zeichnen Sie eine unterkritische und eine überkritische Isotherme ein. Wo liegt in dem p,v-Diagramm das Gebiet, in dem sich der Stoff n
 äherungsweise wie ein ideales Gas verh
 ält. Wie verlaufen dort die Isothermen?
- Ein Reinstoff liegt im Siedezustand vor. Sind Temperatur und Druck frei einstellbar?
- Wie nennt man die Differenz zwischen der spezifischen Enthalpie des Sattdampfs und der siedenden Flüssigkeit (h´´ - h´)?
- Was ist der kritische Punkt und was ist charakteristisch für ein überkritisches Fluid?
- Welche Wert hat das Verhältnis (h' / h') am kritischen Punkt?
- Was versteht man in der Thermodynamik unter dem Korrespondenzprinzip?
- Worin unterscheidet sich die Van-der-Waals Gleichung zum idealen Gas Gesetz?
- Welche Fundamentalgleichungen gibt es? Wozu dient das Guggenheim-Schema?