

Thermodynamik 1 Kapitel 8

Kapitel 8: Mischungen

- 8.1 Mischungen: Definitionen und Zusammensetzungsmaße
- 8.2 Mischungen idealer Gase, kinetische Gastheorie
 - 8.2.1 Zustandsgrößen von Mischungen idealer Gase
 - 8.2.2 Mindesttrennarbeit für ideale Gase
- 8.3 Reale Mischungen
 - 8.3.1 Exzessgrößen
 - 8.3.2 Ideale Mischungen realer Stoffe
 - 8.3.3 Gibbsche Phasenregel
 - 8.3.4 Phasengleichgewichte von Mischungen
- 8.4 Ideale Gas-Dampf-Mischung: feuchte Luft
 - 8.4.1 Einführung spezifischer Größen 1+x-Konzept
 - 8.4.2 Sättigungspartialdruck
 - 8.4.3 h1+x,x-Diagramm
 - 8.4.4 Prozesse mit feuchter Luft
 (Zu-, Abfuhr von Wärme, Vermischen von Luftströmen, Zumischung von Wasser, Kompression)
 - 8.4.5 Beispiele: Klimaanlage, Kühlturm

8.1 Mischungen: Definitionen und Zusammensetzungsmaße

- Thermodynamik der Mischungen ist umfangreich und anspruchsvoll
 ⇒ In dieser Grundlagenvorlesung nur stark vereinfachte Modelle
- Im Wesentlichen Behandlung von zwei Modellen; die stark vereinfachen, aber wichtige technische Anwendungen abdecken
 - Mischungen idealer Gase
 - Ideale Gas-Dampf-Mischungen (feuchte Luft)
- Daneben einige qualitative Grundlagen zu realen Mischungen

Definitionen

Mischung	Ein System, das aus mehreren Stoffen (Komponenten) besteht
Komponente	Jeder der in der Mischung enthaltenen reinen Stoffe wird als Komponente bezeichnet
"Konzentration"	Bezeichnet den Anteil einer bestimmten Komponente (bezogen auf Masse oder Substanzmenge)

8.1 Mischungen: Definitionen und Zusammensetzungsmaße

- Zwei typische Aufgabenstellungen der Thermodynamik der Mischungen
 - Berechnung von Stoffdaten f
 ür homogene (einphasige) Systeme (z.B. v, h, u, s h
 ängen von der Zusammensetzung der Mischung ab) Anwendungen z.B. in der Energietechnik, dem Transport und der Verteilung von Erdgasen und der K
 ältetechnik
 - Berechnung von Phasengleichgewichten
 Anwendungen z.B. in der chemischen Industrie, bei der Gewinnung von Erdgasen und in der Umwelttechnik
- Die Beschreibung von Phasengleichgewichten ist besonders schwierig, weil die Zusammensetzung beider Phasen i.d.R. unterschiedlich ist

8.1 Mischungen: Definitionen und Zusammensetzungsmaße

- Beispiele
 - Wasser / Luft: Bei Normaldruck kaum Luft in der flüssigen Phase
 - Öl / Kältemittel: Wenig Öl in der Gasphase
 - Alkohol / Wasser: Mehr Alkohol in der Gasphase, aber beide Komponenten in beiden Phasen relevant
- ⇒ Zusammensetzung beider Phasen ist zu ermitteln, ehe andere Stoffdaten berechnet werden können
- Beide Aufgabenstellungen sind Gegenstand aktueller Forschung, aber mit etwas unterschiedlicher Zielrichtung
 - Genauere Beschreibung von Stoffdaten relativ einfacher homogener
 Mischungen z.B. f
 ür Erdgasindustrie, Energietechnik und K
 ältetechnik
 - Eher qualitative Beschreibung komplexer Phasengleichgewichte z.B. f
 ür chemische Industrie, Petrochemie (Augenmerk haupts
 ächlich auf der Bestimmung der Zusammensetzung von Phasen im Gleichgewicht)

8.1 Mischungen: Definitionen und Zusammensetzungsmaße

Beschreibung der Zusammensetzung durch Zusammensetzungsmaße

- In einem abgeschlossenen System kann die Zusammensetzung durch extensive Variablen (die ihren Wert bei Teilung des Systems ändern) beschrieben werden
- Durch die Massen m_a , m_b , ... aller beteiligten Komponenten; es gilt $m = \sum_i m_i$
- Durch die Substanzmengen n_a , n_b , ... aller beteiligten Komponenten; es gilt $n = \sum_i n_i$
- Sinnvoller ist i.d.R. die Beschreibung durch intensive Variablen
- \Rightarrow Massenbruch \Rightarrow Mole

⇒ Molenbruch

$$\xi_{k} = \frac{m_{k}}{m} = \frac{m_{k}}{\sum_{i} m_{i}} \quad \text{mit} \quad \sum_{i} \xi_{i} = 1 \qquad \psi_{k} = \frac{n_{k}}{n} = \frac{n_{k}}{\sum_{i} n_{i}} \quad \text{mit} \quad \sum_{i} \psi_{i} = 1 \quad (\text{häufig auch } x_{k})$$

8.1 Mischungen: Definitionen und Zusammensetzungsmaße

Weniger sinnvoll, aber in der Praxis häufig anzutreffen sind folgende Größen:

 Partialdruck = Der Druck, der herrschen würde, wenn die Komponente k das gesamte Volumen alleine einnehmen würde; gilt streng genommen nur für ideale Gase

$$p_{k} = \psi_{k} \cdot p$$
 mit $\sum_{i} p_{i} = p$

• Partialvolumen / Volumenkonzentration

$$\varpi_{k} = rac{V_{k}}{V} = rac{m_{k}/\rho_{k,o}(T,p)}{V}$$

• Nur für ideale Mischungen gilt

$$\varpi_{k} = \frac{V_{k}}{\sum_{i} V_{i}} = \frac{m_{k}/\rho_{k,o}(T,p)}{\sum_{i} m_{i}/\rho_{i,o}(T,p)}$$

8.2 Mischungen idealer Gase, kinetische Gastheorie

Ideale Gase werden durch drei Eigenschaften charakterisiert

- 1. Moleküle bestehen aus Punktmassen ohne räumliche Ausdehnung
- 2. Es bestehen keine Wechselwirkungskräfte zwischen den Molekülen
- 3. Das ideale Gas ist ein Modellgas, das es in der Realität nicht gibt

Aber: Reale Gase verhalten sich bei niedrigen Dichten in guter Näherung wie ideale Gase

 Druck und innere Energie des idealen Gases wurden in Thermodynamik I kinetisch erklärt

$$\rho = \frac{1}{3}c^2m^*\frac{N}{V} = kT\frac{N}{V} = \frac{R_m}{N_A}T\frac{N}{V} = \frac{R_m}{N_A}T\frac{\rho_m N_A V}{V} = R_m T\rho_m$$

Boltzmann Konstante: Molare Gaskonstante Avogadro Konstante: $k = 1,380658 \cdot 10^{-23} \text{ J/K}$ $R_{\text{m}} = \text{k} \cdot \text{N}_{\text{A}} = 8,314472 \text{ J/(mol K)}$ $N_{\text{A}} = 6,02205 \cdot 10^{23} \text{ Teilchen/mol}$

 Es werden keine Wechselwirkungen berücksichtigt, Moleküle unterscheiden sich nur durch ihre Molmasse (bei spezifischer Betrachtung)
 ⇒Aussagen müssen für Komponenten einer Mischung genauso gelten

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik

Fakultät III – Prozesstechnik

8.2 Mischungen idealer Gase, kinetische Gastheorie

Partialdruck A:

 $p_{A} = \frac{dG_{x,A}}{Fdt} = \frac{1}{3}c^{2}m_{A}^{*}\frac{N_{A}}{V} = R_{m}T\rho_{m,A} = \psi_{A}R_{m}T\rho_{m}$

Partialdruck B:

$$\rho_{\rm B} = \frac{\mathrm{d}G_{\rm x,B}}{F\,\mathrm{d}\,t} = \frac{1}{3}c^2 m_{\rm B}^* \frac{N_{\rm B}}{V} = R_{\rm m}T\rho_{\rm m,B} = \psi_{\rm B}R_{\rm m}T\rho_{\rm m}$$

⇒ Gesamtdruck:

$$\boldsymbol{\rho} = \left(\sum_{i} \psi_{i}\right) \cdot \boldsymbol{R}_{m} T \boldsymbol{\rho}_{m} = \boldsymbol{R}_{m} T \boldsymbol{\rho}_{m}$$

 Bei spezifischer Betrachtungsweise sind die unterschiedlichen Gaskonstanten zu berücksichtigen

Partialdruck A:

Partialdruck B:

⇒ Gesamtdruck: `

 \Rightarrow Gaskonstante:

$$p_{A} = R_{m}T\rho_{m,A} = \frac{R_{m}}{M_{A}}T\rho_{m,A}M_{A} = R_{A}T\rho_{A} = \xi_{A}R_{A}T\rho$$

$$p_{B} = R_{m}T\rho_{m,B} = \frac{R_{m}}{M_{B}}T\rho_{m,B}M_{B} = R_{B}T\rho_{B} = \xi_{B}R_{B}T\rho$$

$$p = \left(\sum_{i}\xi_{i}R_{i}\right)\cdot T\cdot\rho = R_{Mischung}\cdot T\cdot\rho$$

$$R_{Mischung} = \sum_{i}\xi_{i}R_{i} = \frac{R_{m}}{M_{Mischung}} = \frac{R_{m}}{\sum_{i}\psi_{i}M_{i}}$$

8.2.1 Zustandsgrößen von Mischungen idealer Gase: kalorische Zustandsgrößen

- Auch für kalorische Zustandsgrößen gilt, dass es ohne Wechselwirkungen keine Beeinflussung zwischen den unterschiedlichen Komponenten gibt
- In einer Mischung idealer Gase setzt sich z.B. die innere Energie eines Systems aus den Beiträgen der einzelnen Komponenten zusammen

$$U = U_{a} + U_{b} + \ldots = n_{a} \cdot U_{m,a} + n_{b} \cdot U_{m,b} + \ldots$$

$$U_{\rm m} = \frac{U}{\sum_{i} n_{\rm i}} = \frac{n_{\rm a} \cdot u_{\rm m,a}}{\sum_{i} n_{\rm i}} + \frac{n_{\rm b} \cdot u_{\rm m,b}}{\sum_{i} n_{\rm i}} + \dots = \psi_{\rm a} \cdot u_{\rm m,a} + \psi_{\rm b} \cdot u_{\rm m,b} + \dots$$

Alle kalorischen Größen lassen sich in Mischungen idealer Gase aus den Größen der Komponenten zusammensetzen

$$U_{m} = \sum_{i} \psi_{i} U_{m,i} \qquad U = \sum_{i} \xi_{i} U_{i}$$
$$h_{m} = \sum_{i} \psi_{i} h_{m,i} \qquad h = \sum_{i} \xi_{i} h_{i}$$
$$C_{v,m} = \sum_{i} \psi_{i} C_{v,m,i} \qquad C_{v} = \sum_{i} \xi_{i} C_{v,i}$$

• Dies gilt nicht für die Entropie und mit ihr verknüpfte Größen

8.2.1 Mischungen idealer Gase, Entropie

• Für die Entropie idealer Gase folgt

$$ds^{\circ}(T,p) = \frac{dh^{\circ}(T) - vdp}{T} = \frac{dh^{\circ}(T)}{T} - \frac{RTdp}{pT}$$
$$\Rightarrow ds^{\circ}(T,p) = \frac{dh^{\circ}(T)}{\underbrace{T}_{f(T)}} - \frac{Rdp}{\underbrace{p}_{f(p)}}$$

- Die Beziehung gilt auch für Mischungen idealer Gase
- Berechnung von *s*(*T*,*p*) durch Integration

$$s^{\circ}(T,p) = s^{\circ}(T_{0},p_{0}) + \int_{T_{0}}^{T} \frac{dh^{\circ}(T)}{T} + \int_{p_{0}}^{p} -\frac{R}{p} dp$$

$$\Rightarrow s^{\circ}(T,p) = \underbrace{s^{\circ}(T_{0},p_{0})}_{s^{\circ}(T,p_{0})} + \underbrace{\int_{T_{0}}^{T} \frac{c^{\circ}_{p}(T)}{T} dT}_{s^{\circ}(T,p_{0})} - R \ln\left(\frac{p}{p_{0}}\right)$$

8.2.1 Mischungen idealer Gase, Entropie

• Berechnung von *s*(*T*,*v*) ist analog

$$ds^{o}(T,v) = \frac{du^{o}(T) + pdv}{T}$$

$$\Rightarrow \quad s^{o}(T,v) = \underbrace{s^{o}(T_{0},v_{0}) + \int_{T_{0}}^{T} \frac{c^{o}(T)}{T} dT}_{s^{o}(T,v_{0})} + R \ln\left(\frac{v}{v_{0}}\right)$$

• Die Komponenten sind nach wie vor unabhängig

⇒ Entropie einer Mischung idealer Gase

$$s_{A}^{o}(T, p_{A}) = s_{A}^{o}(T, p_{0}) - R \ln\left(\frac{\psi_{A} p}{p_{0}}\right) = \underbrace{s_{A}^{o}(T, p_{0}) - R \ln\left(\frac{p}{p_{0}}\right)}_{s_{A}^{o}(T, p)} - R \ln\psi_{A}$$

$$s_{B}^{o}(T, p_{B}) = s_{B}^{o}(T, p_{0}) - R \ln\left(\frac{\psi_{B} p}{p_{0}}\right) = \underbrace{s_{B}^{o}(T, p_{0}) - R \ln\left(\frac{p}{p_{0}}\right)}_{s_{B}^{o}(T, p)} - R \ln\psi_{B}$$

8.2.1 Mischungen idealer Gase, Entropie

$$\Rightarrow S_{\text{Mischung}}^{\text{o}}(T,p) = \sum_{i} n_i (s_{i,o}^{\text{o}}(T,p) - R \ln \psi_i)$$

$$\Rightarrow S_{\text{Mischung}}^{\text{o}}(T,p) = \sum_{i} \psi_{i} S_{i,o}^{\text{o}}(T,p) - R \sum_{i} \psi_{i} \ln \psi_{i}$$

Mischungsgröße \neq 0

 Mischungsgrößen der freien Enthalpie g und der freien Energie (Helmholtz Energie) f

$$g(T,p) = h - Ts$$
 \Rightarrow $g^{\circ}_{\mathsf{Mischung}}(T,p) = \sum_{i} \psi_{i} g^{\circ}_{i,o}(T,p) + RT \sum_{i} \psi_{i} \ln \psi_{i}$

$$f(T,v) = u - Ts$$
 \Rightarrow $f^{o}_{\text{Mischung}}(T,v) = \sum_{i} \psi_{i} f^{o}_{i,o}(T,v) + RT \sum_{i} \psi_{i} \ln \psi_{i}$

8.2.1 Zustandsgrößen von Mischungen idealer Gase

• Allgemeine Schreibweise für die Zustandsgrößen einer Mischung idealer Gase

Molar $z^{\circ}(T, p, \overline{\psi}) = \sum_{i} \psi_{i} z^{\circ}_{i,o}(T, p) + \begin{cases} -R \sum_{i} \psi_{i} \ln \psi_{i} & \text{für s} \\ RT \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \end{cases}$

Spezifisch

$$z^{o}(T, p, \overline{\xi}) = \sum_{i} \xi_{i} z^{o}_{i,o}(T, p) + \begin{cases} -(\sum_{i} \xi_{i} R_{i,o}) \sum_{i} \psi_{i} \ln \psi_{i} & \text{für s} \\ T(\sum_{i} \xi_{i} R_{i,o}) \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \end{cases}$$

mit
$$\Psi_{i} = \frac{\xi_{i}}{M_{i}\sum_{k} \xi_{k}/M_{k}}$$

• Achtung: Die oben angegebenen Beziehungen gelten nicht für die Dichte ρ

8.2.2 Mindesttrennarbeit für ideale Gase

Schematische Zeichnung einer energetisch idealen Anlage zur Zerlegung von Gasmischungen

8.2.2 Mindesttrennarbeit für ideale Gase

Energiebilanz

$$\dot{n} \cdot h^{\circ}(T_{1}, p_{1}, \overline{\psi}) + P_{\min} - \dot{n} \cdot \sum_{i} \psi_{i} h^{\circ}_{i,o}(T_{2}, p_{2}) + \dot{Q}_{\min} = 0$$
$$\Rightarrow P_{\min} = -\dot{Q}_{\min}$$

Entropiebilanz

$$\dot{n} \cdot s^{\circ}(T_1, p_1, \overline{\psi}) - \dot{n} \cdot \sum_{i} \psi_i s^{\circ}_{i,o}(T_2, p_2) + \underbrace{\dot{Q}_{\min}/T_u}_{\text{rev. WÜ bei} T_u} = 0$$

$$\Rightarrow P_{\min} = -\dot{Q}_{\min} = -T_{u} \dot{n} R \sum_{i} \psi_{i} \ln \psi_{i}$$

Beispiel Luftzerlegung

$$\psi_{N_2} \approx 0.79, \ \psi_{O_2} \approx 0.21 \qquad \Rightarrow \qquad W_{t,min} \approx 1230 \text{ J/mol} \approx 42.5 \text{ kJ/kg}$$

8.2.1 Zustandsgrößen von Mischungen idealer Gase

Technisch realisiert wird $W_{\rm t} \approx 200 \, \rm kJ/kg$

Theoretisch besteht erhebliches Verbesserungspotential

8.3 Reale Mischungen

- Gasförmige Mischungen werden in weiten Bereichen des Maschinenbaus als Mischungen idealer Gase betrachtet
- Diese Betrachtungsweise gilt jedoch nur im Grenzfall verschwindender Dichte
- In guter Näherung können reale gasförmige Mischungen bei moderaten Drücken als Mischungen idealer Gase betrachtet werden
- Bei hohen Temperaturen (bezogen auf T_c der beteiligten Stoffe) trägt diese Näherung auch bis zu hohen Drücken – die Grenzen lassen sich nicht pauschal angeben, der Übergang ist fließend

8.3 Reale Mischungen

 Abweichungen zwischen idealer (c_p^o) und realer (c_p) isobarer Wärmekapazität von Luft

8.3 Reale Mischungen

- Bei der Beschreibung realer Mischungen wird die molare Betrachtung bevorzugt
- Für ideale Mischungen gilt

$$z^{o}(T, p, \overline{\psi}) = \sum_{i} \psi_{i} z^{o}_{i,o}(T, p) + \begin{cases} -R \sum_{i} \psi_{i} \ln \psi_{i} & \text{für s} \\ RT \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \\ \Delta^{M} z^{o}, \text{ideale Mischungsgröße} \end{cases}$$

- Bei der Betrachtung realer Mischungen muss berücksichtigt werden
 - reales Verhalten der Komponenten, also $z_{i,o}(T,p)$ statt $z_{i,o}^{o}(T,p)$
 - Realeffekte der Mischung, also $\Delta^{M} z(T, p, \overline{\psi})$ statt $\Delta^{M} z^{o}(T, \overline{\psi})$
- Zustandsgrößen realer Mischungen lassen sich demnach schreiben als

 $Z(T, \rho, \overline{\psi}) = \sum_{i} \psi_{i} Z_{i,o}(T, \rho) + \Delta^{M} Z(T, \rho, \overline{\psi})$

8.3.1 Exzessgrößen

- In der Mischungsgröße der realen Mischung $\Delta^{M} z(T, p, \overline{\psi})$ sind enthalten
 - die Mischungsgröße idealer Gase
 - die Realeffekte der Mischung (Exzessgrößen z^E)
- Die Exzessgröße z^E hängt ab von
 - dem Druck *p* (wie beim Realteil reiner Stoffe)
 - der Temperatur *T* (wie beim Realteil reiner Stoffe)
 - der Zusammensetzung $\overline{\psi}$

$$Z(T, p, \overline{\psi}) = \sum_{i} \psi_{i} Z_{i,o}(T, p) + \Delta^{M} Z^{o}(T, \overline{\psi}) + Z^{E}(T, p, \overline{\psi})$$

ideale Mischungsgröße
der Komponenten

• Grafische Darstellung einer Zustandsgröße mit $\Delta^{M} z^{O}(T, \overline{\psi}) = 0$ (alle außer *s*, *f* und *g*)

8.3.1 Exzessgrößen

• Grafische Darstellung einer Zustandsgröße mit $\Delta^{M} z^{O}(T, \overline{\psi}) \neq 0$ (*s*, *f* und *g*)

- Für die Berechnung der Zustandsgrößen realer Mischungen sind erforderlich
 - Zustandsgleichungen für die reinen Komponenten
 - Informationen über die Exzessgrößen
- Exzessgrößen lassen sich experimentell ermitteln oder berechnen (g^E-Modelle sind Standard in der Verfahrenstechnik, auch bei komplexen Mischungen)
- Für die Grundvorlesung gehen diese Ansätze jedoch zu weit

8.3.2 Ideale Mischungen realer Stoffe

- "Ideale Mischungen realer Stoffe" sind ein in der Praxis häufig hilfreiches Modell
- Für ideale Mischungen realer Stoffe gilt für alle Zustandsgrößen $z^{E}(T, p, \overline{\psi}) = 0$
- Für ideale Mischungen gilt damit

$$Z_{\text{id.M.}}(T, p, \overline{\psi}) = \sum_{\substack{i \\ \text{reale Zustandsgrößen} \\ \text{der Komponenten}}} \psi_i Z_{i,o}(T, p) + \underbrace{\Delta^{M} Z^{o}(T, \overline{\psi})}_{\substack{\text{ideale Mischungsgröße} \\ (=0 \text{ für } z \neq s, f, g)}}$$

- Mischungen idealer Gase $z_{i,o} = z_{i,o}^{o}$ sind immer auch ideale Mischungen
- Das Modell "ideale Mischungen realer Stoffe" berücksichtigt zusätzlich das reale Verhalten der reinen Komponenten

8.3.2 Ideale Mischungen realer Stoffe

- Vernachlässigt werden die Effekte unterschiedlicher Wechselwirkungen zwischen den Molekülen der beteiligten Komponenten (die Exzessgrößen z^{E)}
- Mit dem Modell "ideale Mischungen realer Stoffe" muss gearbeitet werden, wenn bei Gas- oder Flüssigkeitsmischungen nicht von idealen Gasen ausgegangen werden kann, aber keine Informationen über das tatsächliche Verhalten des Mischung vorliegen

8.3.2 Ideale Mischungen realer Stoffe

 Gute Ergebnisse, wenn die Moleküle der verschiedenen Komponenten ähnlich sind (z.B. Stickstoff und Sauerstoff als Hauptbestandteile von Luft, beide zweiatomig, quadrupolar)

⇒ Gleiche und ungleiche Wechselwirkung ähnlich

- Schlechtere Ergebnisse bei ungleichen Molekülen (z.B. Öl in Kältemittel), große Unterschiede zwischen gleicher und ungleicher Wechselwirkung
 – hier sind mischungsspezifische Informationen unerlässlich
- Modelle zur genaueren Beschreibung von Mischungen gehen von der Modellierung von Exzessgrößen ab, beschreiben die Mischungen mit Zustands- bzw. Fundamentalgleichungen
- Im einfachsten Fall können z.B. **kubische Zustandsgleichungen** durch geeignete Modifikation der Parameter zur Beschreibung von Mischungen verwendet werden
- Für die Grundvorlesung gehen diese Modelle zu weit

8.3.3 Gibbssche Phasenregel

- Frage: Wie viele Freiheitsgrade hat eine Mischung?
- Im homogenen Zustandsgebiet
- wie bei reinen Stoffen zwei Variablen zur Beschreibung des thermischen und mechanischen Zustands des Systems z.B. *T, p*
- für *N* Komponenten (*N* 1) Molenbrüche zur Beschreibung der Zusammensetzung (*N*-ter Molenbruch aus $\sum_{i} \psi_{i} = 1$
- ⇒ Im homogenen Zustandsgebiet haben Mischungen mit N Komponenten daher (N+1) Freiheitsgrade
- Neben der Berechnung von Größen im homogenen Zustandsgebiet hat die Berechnung von Phasengleichgewichten für Mischungen eine herausragende Bedeutung
- Die Berechnung von Phasengleichgewichten dominiert im Bereich der Verfahrenstechnik, der Umwelttechnik, aber auch in manchen energietechnischen Anwendungen
- Auch für Mischungen gilt im Phasengleichgewicht T' = T'' und p' = p''

8.3.3 Gibbssche Phasenregel

Die stoffliche Gleichgewichtsbedingung muss f
ür jede Komponente i=1...N erf
üllt sein

Stoffliches Gleichgewicht $g'_i = g''_i$

- \Rightarrow (*N* + 2) Gleichgewichtsbedingungen
- Im Phasengleichgewicht muss der Zustand von P Phasen beschrieben werden
 Sunächst P·(N + 1) Variablen
- Die (N + 2) Gleichgewichtsbedingungen lassen sich bei
 P ≥ 2 als Koppelungsbedingung zu den anderen Phasen (P 1) mal schreiben
 ⇔ (P 1)·(N + 2) Bedingungen
- Für die Zahl der Freiheitgrade FG ergibt sich damit

$$FG = P \cdot (N+1) - (P-1) \cdot (N+2)$$
$$FG = N+2-P$$

8.3.4 Phasengleichgewichte von Mischungen

System	Homogen	Gesättigt	Tripel- Zustand
Zahl der Phasen im Gleichgewicht	1	2	3
Reinstoff	2	1	0
Binäre Mischung	3	2	1
Ternäre Mischung	4	3	2

- Reinstoffe haben im Phasengleichgewicht aus zwei Phasen nur einen Freiheitsgrad
- ⇒ Ist der Druck vorgegeben, ergibt sich die Siedetemperatur, ist die Temperatur vorgegeben, ergibt sich der Dampfdruck
- Binäre Mischungen haben im Phasengleichgewicht aus zwei Phasen zwei Freiheitsgrade
- Es besteht bei Mischungen keine feste Zuordnung von Dampfdruck und Siedetemperatur

8.3.4 Phasengleichgewichte von Mischungen

• Verdampfung einer binären Mischung

8.3.4 Phasengleichgewichte von Mischungen

- Darstellung im *T*, ψ-Diagramm (statt ψ häufig auch x)
- A= schwerer siedende Komponente, z.B. Wasser
 B= leichter siedende Komponente, z.B. Alkohol
- Die Konzentrationsunterschiede zwischen Flüssigkeits- und Dampfphase werden in der Verfahrenstechnik für Trennprozesse ausgenutzt

⇒ Destillation, Rektifikation

 Phasengleichgewichte können auch andere, für die Praxis ebenso wichtige Formen annehmen

8.3.4 Phasengleichgewichte von Mischungen

Komponente B bei *T* bereits überkritisch

Azeotrop: Bei einer bestimmten

Zusammen-setzung verhält sich die Mischung beim Sieden wie ein reiner Stoff, d.h. der Dampf hat die-selbe

Zusammensetzung wie die Flüssigkeit

- Probleme bei der Trennung
- gezielter Einsatz z.B. in der Kältetechnik

8.4 Ideale Gas-Dampf-Mischungen

Ideale Gas-Dampf-Mischungen lassen sich wie folgt charakterisieren

- Eine oder mehrere Komponenten der Mischung können im relevanten Temperaturund Druckbereich als ideale Gase betrachtet werden, deren Kondensation ist ausgeschlossen
- Eine Komponente kann kondensieren
- In der Gasphase kann auch die kondensierende Komponente als ideal betrachtet werden
- Die flüssige Phase enthält nur die kondensierende Komponente

Beispiele:

- Luft + Wasser: feuchte Luft (Klimatechnik, Energietechnik, ...)
- Luft + Brennstoff (Energietechnik)
- Wasserhaltige Verbrennungs- bzw. Abgase (Energietechnik)

Aber nicht:

SO_{2/3}-haltiges Verbrennungsgas / Wasser: Bildung von H₂SO_{3/4} in der flüssigen Phase führt zu ganz anderem Kondensationsverhalten → Voraussetzungen stets genau prüfen

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

- Die nicht kondensierbaren Gase können i.d.R. als eine Komponente betrachtet werden (z.B. "trockene Luft" statt 78% N₂, 21% O₂, 1% Ar)
- ⇒ Das System lässt sich auf die Betrachtung zweier Komponenten reduzieren, von denen eine flüssig vorliegen kann

Beispiel feuchte Luft

• "Trockene Luft" ist eine Mischung, deren Zusammensetzung sich in den meisten Anwendungen nicht verändert

Komponente Molenbruch ψ Molmasse M _i Stickstoff 0.781109 28.01348 g/mol Sauerstoff 0.209548 31.9988 g/mol Argon 0.009343 39.948 g/mol			
Stickstoff0.78110928.01348 g/molSauerstoff0.20954831.9988 g/molArgon0.00934339.948 g/mol	Komponente	Molenbruch $\psi_{\rm I}$	Molmasse <i>M</i> i
-	Stickstoff Sauerstoff Argon	0.781109 0.209548 0.009343	28.01348 g/mol 31.9988 g/mol 39.948 g/mol

Zusammensetzung von trockener Luft nach ISO 2533

(Komponenten mit $\psi_i < 0.05\%$ vernachlässigt, zu $\sum_i \psi_i = 1$ ergänzt)

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

- \Rightarrow Molmasse $M_{\rm L}$ der trockenen Luft: 28.9601 g/mol
- \Rightarrow Gaskonstante $R_{\rm L}$ der trockenen Luft: 287.101 J/(kg K)
- Wasser ist ein reiner Stoff
- \Rightarrow Molmasse M_{H2O} des Wassers: 18.01528 g/mol
- \Rightarrow Gaskonstante R_{H2O} des Wassers: 461.523 J/(kg K)

Zusammensetzungsmaße zur Beschreibung des Wassergehalts feuchter Luft:

- Molenbruch, ψ_{H2O}
- Massenbruch, ξ_{H2O}
- Partialdruck, p_{H2O}
 (= ψ_{H2O}·p; Achtung: eignet sich nicht zur vollständigen Beschreibung zweiphasiger Systeme)
- Absolute Feuchte $\rho_{H2O} = m_{H2O} / V (= \xi_{H2O} \cdot \rho)$

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

Wassergehalt

$$\mathbf{x} = \frac{m_{\rm H2O}}{m_{\rm L}} = \frac{\xi_{\rm H2O} \cdot m_{\rm ges}}{(1 - \xi_{\rm H2O}) \cdot m_{\rm ges}} = \frac{\xi_{\rm H2O}}{1 - \xi_{\rm H2O}}$$

- Massenbruch und Wassergehalt sind austauschbar
- Aber: Bei den meisten technischen Prozessen bleibt der Massenstrom an trockener Luft konstant, während dem System Wasser zugeführt oder entzogen wird (Kondensation, Verdunstung, Trocknung, ...)
- ⇒ Verwendung des Wassergehalts vereinfacht dann die Berechnungen
- Spezifische Größen können vorteilhaft auf die Masse (oder den Massenstrom) trockener Luft bezogen werden, wenn diese Bezugsgröße sich während des Prozesses nicht verändert

Einführung spezifischer Größen – 1+x-Konzept 8.4.1

Spezifisches Volumen: $V_{1+x} = \frac{V}{m_{L}} = \frac{m_{L}v_{L} + m_{H2O}v_{H2O}}{m_{I}} = V_{L} + XV_{H2O}$

Achtung: $V_{H2O} = V/m_{H2O} = V/(m_{H2O,g} + m_{H2O,fl} + m_{H2O,fest})$ flüssigen bzw. festen Anteil berücksichtigen muss ggf. auch den

Thur Gasphase:
$$V_{1+x} = V_{L} + XV_{H2O} = \frac{R_{L}T}{\rho} + X\frac{R_{H2O}T}{\rho} = (R_{L} + XR_{H2O})\frac{T}{\rho}$$

Spezifische Enthalpie: $h_{1+x} = \frac{H}{m_{L}} = \frac{m_{L}h_{L} + m_{H2O}h_{H2O}}{m_{L}} = h_{L} + Xh_{H2O}$

- Die spezifische Enthalpie h_{1+x} ist die Schlüsselgröße zur Auslegung zahlreicher Prozesse mit feuchter Luft \rightarrow 1. Hauptsatz
- Zur Berechnung von $h_{\rm L}$ und $h_{\rm H2O}$ zunächst **Definition von Nullpunkten**
- $h_{\rm I}$ wird zu Null bei $t = 0^{\circ}$ C, unabhängig vom Druck, weil Luft als id. Gas betrachtet wird

$$\Rightarrow h_{\rm L}(t) = \int_{0^{\circ}{\rm C}}^{1} c_{\rm p,L}^{\rm o} dt$$

8.4.1 Einführung spezifischer Größen – 1+x-Konzept

 Im Bereich –50° C bis +100° C gilt in guter N\u00e4herung Isobare Wärmekapazität von trockener Luft, p = 1 bar

- h_{H2O} ist f
 ür fl
 üssiges Wasser bei t = 0° C zu Null gesetzt und ist in guter N
 äherung unabh
 ängig vom Druck
- Im Bereich von 0° C bis +75° C gilt in guter Näherung

$$c_{\mathrm{p,H2O,fl}}^{\mathrm{o}} = 4.18 \frac{\mathrm{kJ}}{\mathrm{kgK}} = \mathrm{const.}$$
 \Rightarrow $h_{\mathrm{H2O,fl}}(t) = 4.18 \frac{\mathrm{kJ}}{\mathrm{kg}} \cdot t$

8.4.1 Einführung spezifischer Größen – 1+x-Konzept

Die Verdampfungsenthalpie dominiert $h_{H2O,g}$ für gasförmiges Wasser; bei 0 °C gilt: $\Delta h^{v} \approx 2500 \text{ kJ/kg}$

• Die Annahme c_p° = const. ist für gasförmiges Wasser nur vertretbar, weil Δh^{\vee} i.d.R. den weitaus größeren Beitrag liefert

$$c_{\mathrm{p,H2O,g}}^{\mathrm{o}} \approx 1.86 \frac{\mathrm{kJ}}{\mathrm{kgK}} \approx \mathrm{const.}$$
 $h_{\mathrm{H2O,g}}(t) = 2500 \frac{\mathrm{kJ}}{\mathrm{kg}} + 1.86 \frac{\mathrm{kJ}}{\mathrm{kg}} \cdot t$ $(t \, \mathrm{in} \, {}^{\mathrm{o}}\mathrm{C})$

8.4.1 Einführung spezifischer Größen – 1+x-Konzept

- Rechenvorschriften für h_{1+x}
- Wasser nur gasförmig

$$h_{\mathrm{H+x}}(t,x) = h_{\mathrm{L}} + xh_{\mathrm{H2O}} = 1,007 \frac{\mathrm{kJ}}{\mathrm{kg}} \cdot t + x \cdot \left(2500 \frac{\mathrm{kJ}}{\mathrm{kg}} + 1,86 \frac{\mathrm{kJ}}{\mathrm{kg}} \cdot t\right)$$

• Wasser flüssig und gasförmig

$$h_{1+x}(t,x) = h_{L} + xh_{H2O} = 1,007 \frac{kJ}{kg} \cdot t + x_{s} \cdot \left(2500 \frac{kJ}{kg} + 1,86 \frac{kJ}{kg} \cdot t\right) + (x - x_{s}) \cdot 4,18 \frac{kJ}{kg} \cdot t$$

- Wie ist der Sättigungswassergehalt x_s zu berechnen?
- Bei idealen Gas-Dampf-Mischungen enthält die flüssige Phase nur die Komponente "Dampf" – im Folgenden mit dem Index "o" gekennzeichnet ⇒ die stoffliche Gleichgewichtsbedingung muss im Phasengleichgewicht nur für den Dampf erfüllt sein

$$g''_{D}(T, p, \psi_{D,s}) = g'_{D,o}(T, p)^{(1)}$$

8.4.2 Sättigungspartialdruck

• Für die reine Komponente "Dampf" gilt

$$g_{D,o}''(T, p_{D,o,s}) = g_{D,o}'(T, p_{D,o,s})^{(2)}$$
 und $p_{D,o,s} = p_s(T)$

• Gleichung (2) von (1) abziehen ergibt

$$\underbrace{g_{D}''(T, p, \psi_{D,s})}_{=g_{D}'(T, p_{D,s})} - g_{D,o}''(T, p_{D,o,s}) = g_{D,o}'(T, p) - g_{D,o}'(T, p_{D,o,s})$$

 Aus der Definition der freien Enthalpie (Gibbsche Energie) g folgt f
ür eine ideale Gasphase

$$g^{\circ}(T,p) = h^{\circ}(T) - T \cdot s^{\circ}(T,p) = h^{\circ}(T) - T \cdot \left(s^{\circ}(T,p_{0}) - R \cdot \ln(p/p_{0})\right)$$

$$\Rightarrow g^{\circ}(T,p) = g^{\circ}(T,p_{0}) + RT \ln(p/p_{0})$$

$$\Rightarrow RT \ln \left(\frac{p_{\mathrm{D,s}}}{p_{\mathrm{D,o,s}}}\right) = g'_{\mathrm{D,o}}(T,p) - g'_{\mathrm{D,o}}(T,p_{\mathrm{D,o,s}}) = \int_{p_{\mathrm{D,o,s}}}^{p} \left(\frac{\partial g'_{\mathrm{D,o}}}{\sqrt{\partial p}}\right)_{T} \mathrm{d}p$$

8.4.2 Sättigungspartialdruck

$$\Rightarrow RT \ln \left(\frac{p_{D,s}}{p_{D,o,s}}\right) = V'_{D,o} (p - p_{D,o,s})$$

$$\Rightarrow p_{D,s} \approx p_{D,o,s} \cdot \exp \left(\frac{V'_{D,o}(p - p_{D,o,s})}{RT}\right) \approx p_{D,o,s} = p_s(T)$$

$$\underbrace{\underset{meist < 1}{\text{Poynting-Korrektur}}}_{\text{Poynting-Korrektur}}$$

 In den meisten Fällen kann der Sättigungspartialdruck gleich dem Dampfdruck gesetzt werden

$$p_{\mathrm{D,s}} \approx p_{\mathrm{D,o,s}} = p_{\mathrm{s}}(T)$$

• In der Klima- und Trocknungstechnik gilt in aller Regel $p_{D,s} = p_s(T)$, aber es gibt zahlreiche relevante Ausnahmen

8.4.2 Sättigungspartialdruck

• Effekt der "Poynting-Korrektur" für feuchte Luft

Die relative Feuchte φ beschreibt nur ungesättigte Systeme (φ < 1) eindeutig;
 φ = 1 gilt aber f
ür sehr unterschiedliche Werte von x

8.4.2 Beispiel für die Relevanz der Poynting-Korrektur

- Adiabate Luftspeicherkraftwerke als Beispiel f
 ür einen technisch relevanten Problemfall
- **1**: $\approx 650 \,^{\circ}\text{C}$ auf $\approx 30 \,^{\circ}\text{C}$, Kondensation bei $p \approx 100$ bar
- **2**: $\approx 30 \,^{\circ}\text{C}$ auf $\approx 650 \,^{\circ}\text{C}$, Verdampfung bei $p \approx 100$ bar

8.4.3 h_{1+x},x-Diagramm

- *h*_{1+x} und *x* sind die Schlüsselgrößen der meisten technischen Anwendungen mit feuchter Luft
- Das h_{1+x},x-Diagramm ist das am weitesten verbreitete Arbeitsdiagramm in der Klima- und Trocknungstechnik

Aufbau des h_{1+x} , *x*-Diagramms

- Spezifische Enthalpie und Wassergehalt werden auf den Achsen aufgetragen
- Die 0°C-Isotherme verläuft in diesem schiefwinkligen Diagramm im Gasgebiet horizontal

8.4.3 h_{1+x},x-Diagramm

- Die Steigung der anderen Isothermen resultiert im homogenen Gebiet aus der Wärmekapazität des Wassers in der Gasphase
- Die Lage der Sättigungslinie ($\varphi = 1$) ist eine Funktion der Temperatur (und des Drucks); die Diagramme gelten i.d.R. für p = 1 bar bzw. 1 atm

$$p_{\mathrm{D,s}} \approx p_{\mathrm{D,o,s}} \qquad \Rightarrow \qquad \psi_{\mathrm{s}} \approx \frac{p_{\mathrm{D,o,s}}}{p_{\mathrm{ges}}} = \frac{p_{\mathrm{s}}(I)}{p_{\mathrm{ges}}}$$

• Für die Gasphase gilt

$$x = \frac{m_{\text{H2O}}}{m_{\text{L}}} = \frac{V\rho_{\text{H2O}}}{V\rho_{\text{L}}} = \frac{\frac{\rho_{\text{H2O}}}{R_{\text{H2O}}T}}{\frac{p_{\text{L}}}{R_{\text{L}}T}} = \frac{R_{\text{L}}}{\frac{R_{\text{H2O}}}{R_{\text{H2O}}}} \cdot \frac{\rho_{\text{H2O}}}{\rho_{\text{ges}} - \rho_{\text{H2O}}}}{\frac{\rho_{\text{H2O}}}{\rho_{\text{ges}} - \rho_{\text{H2O}}}} \approx \underbrace{0.622}_{\substack{\text{L/H2O} \\ \text{spezifisch}}} \cdot \frac{\rho_{\text{H2O}}}{\rho_{\text{ges}} - \rho_{\text{H2O}}}}{x_{\text{s}}} \approx 0.622 \cdot \frac{\rho_{\text{s,H2O}}(T)}{\rho_{\text{ges}} - \rho_{\text{s,H2O}}(T)}$$

- \Rightarrow Sättigungswassergehalt hängt von *T* und p_{ges} ab
- Linien gleicher relativer Feuchte lassen sich analog berechnen

$$\boldsymbol{x}_{\varphi} \approx 0.622 \cdot \frac{\boldsymbol{\varphi} \cdot \boldsymbol{p}_{\mathrm{s,H2O}}(T)}{\boldsymbol{p}_{\mathrm{ges}} - \boldsymbol{\varphi} \cdot \boldsymbol{p}_{\mathrm{s,H2O}}(T)} \left(\neq \boldsymbol{\varphi} \cdot \boldsymbol{x}_{\mathrm{s}} \right)$$

8.4.3 h_{1+x},x-Diagramm

- Im Nebelgebiet verlaufen die Isothermen fast parallel zu den Isenthalpen; kleine Abweichungen ergeben sich aus der Wärmekapazität des flüssigen Wassers
- Bei 0°C können Wasser- und Eisnebel koexistieren
- Unter 0°C ergibt sich die Steigung der Nebelisothermen aus der Enthalpie des festen Wassers (Eis)

Schmelzenthalpie von Wasser: $\Delta h_{\text{Schm}} \approx -333 \text{ kJ/kg}$ Wärmekapazität von Eis: $c_{p,\text{H2O,fest}} \approx 2.05 \text{ kJ/(kg K)}$

⇒ Bei Bildung von Eisnebel ($x > x_s$, $t < 0^\circ$ C) gilt:

$$h_{\text{1+x}} = c_{\text{p,L}} \cdot t + x_{\text{s}} (r_{\text{o}} + c_{\text{p,H2O,g.}} \cdot t) + (x - x_{\text{s}}) \cdot (\Delta h_{\text{Schm}} + c_{\text{p,H2O,fest}} \cdot t)$$

 Sättigungslinie und Linien φ = const. können unter 0°C durchgezogen werden, haben aber bei 0°C einen Knick (Sublimationsdruck statt Dampfdruck)

8.4.3 h_{1+x},x-Diagramm

 Trotz der Verfügbarkeit von geeigneter Software werden maßstabgerechte h_{1+x},x-Diagramme auch heute in der Praxis verwendet

8.4.4 Prozesse mit feuchter Luft

- Die meisten technischen Anwendungen lassen sich auf eine Kombination von Grundoperationen zurückführen

Isobare Zu- oder Abfuhr von Wärme

- Zufuhr von $Q/m_L > 0$ oder Abfuhr von $Q/m_L < 0$
- Die Denkweise entspräche q_{1+x}, diese Schreibweise ist f
 ür Prozessgrößen aber un
 üblich
- 1. HS: $m_{\rm L}h_{\rm 1+x,2} = m_{\rm L}h_{\rm 1+x,1} + Q$ \Rightarrow $h_{\rm 1+x,2} = h_{\rm 1+x,1} + Q/m_{\rm L}$
- Massenerhaltung: $m_{L,1} = m_{L,2}$, $m_{H2O,1} = m_{H2O,2} \Rightarrow x_1 = x_2$

Aber: $t_2 \neq t_1$ und $\varphi = \varphi(t, p) \Rightarrow \varphi_2 \neq \varphi_1$

8.4.4 Zu- oder Abfuhr von Wärme

- Isobare Zu- oder Abfuhr von Wärme im h_{1+x} , x-Diagramm
- Beide Zustände homogen

 $h_{1+x,2} = h_{1+x,1} + Q/m_L$ $t_2 = t_1 + \frac{Q}{m_L(c_{p,L} + x c_{p,H2O,g})}$

• Zustand 1 homogen, $Q/m_L > 0 \Rightarrow \varphi_2 < \varphi_1$ Zustand 2 auch homogen, (Fall A \rightarrow B)

8.4.4 Zu- oder Abfuhr von Wärme

- Zustand 1 homogen, Q/m_L < 0
 ⇒ φ₂ > φ₁prüfen, ob x < x_s(t₂,p) wenn ja, sind beide Zustände homogen (Fall A → C)
- $x > x_{s}(t_{2^{*}},p) \Rightarrow Zustand 2 \text{ im Nebelgebiet (Fall A <math>\rightarrow D$) ($t_{2^{*}}$ sei die mit "Punkt 2 homogen" berechnete falsche Temperatur t_{2}) $\Rightarrow t_{2} = \frac{h_{1+x,1} + Q/m_{L} - x_{s}(t_{2},p)\Delta h^{\vee}}{c_{p,1} + x_{s}(t_{2},p)c_{p,H2O,g} + (x - x_{s}(t_{2},p))c_{p,H2O,fl}}$
- x ist konstant, aber $x_s = f(t_2, p) \Rightarrow t_2$ nur iterativ bestimmbar
- Zustand 1 im Nebelgebiet erfordert eine analoge Berechnung;
 h_{1+x,1} kann berechnet werden, Q/m_L kann < 0 oder > 0 sein
- Für $Q / m_L > 0$ prüfen, ob $x_s(t_2, p) > x \rightarrow$ wenn ja, ist Zustand 2 homogen (Fall $D \rightarrow A$)

$$\Rightarrow t_2 = \frac{h_{1+x,1} + Q/m_L - x\Delta h^{v_o}}{c_{p,L} + x c_{p,H2O,g}}$$

(kann für die Überprüfung verwendet werden)

8.4.4 Zu- oder Abfuhr von Wärme

- Zustand 2 im "Dreiphasengebiet" bei t = 0 °C (Fall A → E) (Überprüfung: h_{1+x} für Nebel (h_{1+x,fl}) und Eisnebel (h_{1+x,fest}) bei gegebenem x und 0 °C berechnen; für h_{1+x,fl} > h_{1+x,2} > h_{1+x,fest} liegt der Zustand 2 im Dreiphasengebiet)
- $\Rightarrow t_2 = 0 \circ C$, x_{fl} und x_{fest} lassen sich aus $h_{1+x,2}$ berechnen
- **Zustand 2 im** "**Eisnebelgebiet**" bei $t < 0 \circ C$ und $x > x_s(t_2, p)$ (Fall $A \rightarrow F$)
- ⇒ Bestimmung von t₂ analog zu "Punkt 2 im Nebelgebiet" (iterativ) aber mit Rechenvorschrift für Eisnebel
- In manchen Fällen liefert das h_{1+x}, x-Diagramm schon ausreichend genaue Ergebnisse; in jedem Fall lohnt sich sein Einsatz als Orientierungshilfe

8.4.4 Vermischung von zwei Luftströmen

Isobar adiabate Vermischung von zwei Luftströmen

• Berechnung des Mischungspunkts aus Energie- und Massenerhaltungssatz

$$\dot{m}_{L,M} h_{1+x,M} = \dot{m}_{L,A} h_{1+x,A} + \dot{m}_{L,B} h_{1+x,B}$$

• Massenerhaltung Luft

$$\dot{m}_{L,M} = \dot{m}_{L,A} + \dot{m}_{L,B}$$

$$\Rightarrow h_{1+x,M} = h_{1+x,A} + \frac{\dot{m}_{L,B}}{\dot{m}_{L,A} + \dot{m}_{L,B}} (h_{1+x,B} - h_{1+x,A})$$

• Massenerhaltung Wasser

$$\dot{m}_{\rm L,M} x_{\rm M} = \dot{m}_{\rm L,A} x_{\rm A} + \dot{m}_{\rm L,B} x_{\rm B}$$

$$\Rightarrow \quad \mathbf{x}_{\mathrm{M}} = \mathbf{x}_{\mathrm{A}} + \frac{\mathbf{m}_{\mathrm{L,B}}}{\mathbf{m}_{\mathrm{L,A}} + \mathbf{m}_{\mathrm{L,B}}} (\mathbf{x}_{\mathrm{B}} - \mathbf{x}_{\mathrm{A}})$$

- \Rightarrow h_{1+x} und x variieren linear mit dem Massenstromverhältnis
- $t_{\rm M}$ und $\varphi_{\rm M}$ folgen aus h_{1+x} und x wie zuvor diskutiert

8.4.4 Vermischung von zwei Luftströmen

• Darstellung der Vermischung erfolgt im h_{1+x} , x-Diagramm als Mischungsgerade

8.4.4 Zumischung von Wasser

Zustand A	Zustand B	Mischungszustand M
- einphasig	- einphasig	 einphasig (Fall 1) Nebelgebiet (Fall 3) Dreiphasengebiet Eisnebelgebiet
- einphasig - Nebelgebiet - Nebelgebiet	- Nebelgebiet - Nebelgebiet - Eisnebelgebiet	 s.o. (Fall 2) Nebelgebiet Nebelgebiet Dreiphasengebiet Eisnebelgebiet

- Sonderfall: Zumischung von reinem Wasser
- Bei reinem Wasser wird $m_L = 0 \Rightarrow x \rightarrow \infty$
- \Rightarrow Darstellung im h_{1+x} , x-Diagramm nicht ohne weiteres möglich

8.4.4 Zumischung von Wasser

• Rechnerische Behandlung

1. HS:
$$\dot{m}_{\rm L} h_{\rm 1+x,M} = \dot{m}_{\rm L} h_{\rm 1+x,A} + \dot{m}_{\rm H2O,B} h_{\rm H2O,B}$$

 $\Rightarrow h_{\rm 1+x,M} = h_{\rm 1+x,A} + \frac{\dot{m}_{\rm H2O,B}}{\dot{m}_{\rm L,A}} h_{\rm H2O,B}$

(Nullpunkt der Enthalpie von Wasser entspricht dem der feuchten Luft)

Massenerhaltung Wasser

$$\dot{m}_{\text{L,M}} \mathbf{x}_{\text{M}} = \dot{m}_{\text{L,A}} \mathbf{x}_{\text{A}} + \dot{m}_{\text{H2O,B}}$$

$$\Rightarrow \mathbf{x}_{\text{M}} = \mathbf{x}_{\text{A}} + \frac{\dot{m}_{\text{H2O,B}}}{\dot{m}_{\text{L,A}}}$$

• $t_{\rm M}$ und $\varphi_{\rm M}$ folgen aus $h_{1+x,\rm M}$ und $x_{\rm M}$ wie zuvor diskutiert

1

• Darstellung im h_{1+x} , x-Diagramm

$$h_{1+x,M} = h_{1+x,A} + \frac{\dot{m}_{H2O,B}}{\dot{m}_{L,A}} h_{H2O,B} = h_{1+x,A} + \Delta x h_{H2O,B}$$

8.4.4 Zumischung von Wasser

⇒ Für flüssiges Wasser:

$$n_{1+x,M} = h_{1+x,A} + \Delta x \underbrace{c_{p,H2O,fl.} \cdot t_B}_{\substack{\text{Steigung der} \\ Nebelisotherme}}$$

⇒ Zustandsänderung erfolgt parallel zur Nebelisotherme bei der Temperatur t_B des zugemischten Wassers

8.4.4 Zumischung von Wasser

Verdunstungskühlung / Kühlgrenztemperatur

- Bei der Aufnahme von flüssigem Wasser (Verdunstung, siehe Skizze) kühlt sich die feuchte Luft ab
- Streicht feuchte Luft ausreichend lange über flüssiges Wasser, nehmen Luft und Wasser eine Gleichgewichtstemperatur an, die der Temperatur der gesättigten feuchten Luft entspricht
- Energetisch günstige Möglichkeit zur Klimatisierung in trockenen Regionen
- Berechnung erfordert iterative Lösung (Vermischung mit Wasser der Temperatur t_M bis zur Konzentration $x_s(t_M)$)
- Darstellung im h_{1+x},x-Diagramm ist einfach

8.4.4 Zumischung von Wasser

 In einfachen h_{1+x}, x-Diagrammen kann eine Vermischung mit (teilweise) gasförmigem Wasser nicht dargestellt werden

Besonderheit

*h*_{1+x},*x*-Diagramme mit "Randmaßstab"

- "Pol" in diesem Fall bei x = 0, t = 0 °C
- Zustandsänderung ist parallel zur Verbindungslinie vonPol und Enthalpie des zugeführten Wassers auf dem Randmaßstab

8.4.4 Kompression feuchter Luft

Kompression feuchter Luft

• *h*_{1+x},*x*-Diagramme gelten jeweils für einen Druck, die Kompression lässt sich nicht wirklich darstellen, die Effekte lassen sich aber verstehen

Kompression feuchter Luft 8.4.4

Isotherme Kompression (zugeführte Arbeit wird als Wärme abgeführt)

- Beide Zustände sind im h_{1+x} , x-Diagramm an der gleichen Stelle
- Sättigungslinie verschiebt sich mit p

$$\left(x_{s} \approx 0.622 \cdot \frac{p_{s,H2O}(T)}{p - p_{s,H2O}(T)}\right)$$

0

Kommt es zur Kondensation von Wasser, werden die Zusammenhänge komplizierter; meist gilt t = const. als Näherung genauer als $w_{t12} = -q_{12}$ (würde bei einsetzender Kondensation zur Erwärmung der komprimierten Luft führen)

Isentrope Kompression (reversibel adiabater Prozess)

Für die isentrope Kompression idealer Gase gilt

$$p \cdot v^{\kappa} = \text{const.}$$
 mit $\kappa^{\circ} = \frac{c_{p}^{\circ}}{c_{v}^{\circ}} = \frac{c_{p}^{\circ}}{c_{p}^{\circ} - R}$

Für feuchte Luft gilt analog

$$v v_{1+x}^{\kappa} = \text{const.} \quad \text{mit} \quad \kappa^{o} = \frac{C_{p,L}^{o} + XC_{p,H2O}^{o}}{C_{p,L}^{o} + XC_{p,H2O}^{o} - R_{L} - XR_{H2O}}$$

8.4.5 Beispiel: Klimaanlage

- I.d.R. sorgt die Erwärmung bei der Kompression dafür, dass kein Wasser auskondensiert
- In der Klimaanlage wird Luft mit folgenden Teilprozessen konditioniert:
- Vermischung von Abluft mit Umgebungsluft
- 2. Ggf. Trocknung der Luftmischung durch Abkühlung (Kondensation von Wasser am Verdampfer einer Kältemaschine)
- 3. Beheizung der Luftmischung auf Wunschtemperatur
- 4. Vermischung der aufbereiteten Luft mit Raumluft
- Der Gesamtprozess setzt sich aus den zuvor behandelten Grundprozessen zusammen

8.4.5 Beispiel: Kühlturm

Bei der Auslegung eines Kühlturms sind i.d.R. gegeben

- 1. der Zustand des oben zugeführten heißen Wassers
- 2. der Zustand der unten zugeführten Umgebungsluft

- Im Idealfall kann das Wasser bis auf die Kühlgrenztemperatur abgekühlt werden
- Idealisiert lassen sich Eintritts- und Austrittszustände sowie der notwendige Massenstrom Luft berechnen
- Es handelt sich um ein kombiniertes Wärme- und Stoffübertragungsproblem
- Auslegung eines Kühlturms ist allein mit den hier erarbeiteten Grundlagen nicht möglich